APPENDIX ## Appendix A: Search Strategy for Review on Economic Evaluations of Hepatitis C Virus ### **NHSEED** - 1. exp Hepatitis C/di [Diagnosis] - 2. Hepacivirus/ - 3. (hepatitis c or hcv or hepacivirus*).tw. - 4. exp Hepatitis C Antigens/ or exp Hepatitis C Antibodies/ or exp Hepatitis C/ - 5. 2 or 3 or 4 - 6. Mass Screening/ - 7. (screen* or test*).tw. - 8. 6 or 7 - 9. 5 and 8 - 10. 1 or 9 ### **MEDLINE** - 1. exp Hepatitis C/di [Diagnosis] - 2. Hepacivirus/ - 3. (hepatitis c or hcv or hepacivirus*).tw. - 4. exp Hepatitis C Antigens/ or exp Hepatitis C Antibodies/ or exp Hepatitis C/ - 5. 2 or 3 or 4 - 6. Mass Screening/ - 7. (screen* or test*).tw. - 8. 6 or 7 - 9. 5 and 8 - 10. 1 or 9 - 11. exp Hepatitis C/ec [Economics] - 12. exp "Costs and Cost Analysis"/ - 13. exp models, economic/ - 14. markov chains/ - 15. Quality-Adjusted Life Years/ or choice behavior/ - 16. Mass Screening/ec [Economics] - 17. (economic evaluation* or cost benefit* or cost effective* or cost utilit* or cost minimization or cost or costs or costing or (economic adj5 model*) or economics).tw. - 18. 11 or 12 or 13 or 14 or 15 or 16 or 17 - 19. 10 and 18 - 20. limit 19 to english language - 21. limit 20 to animals - 22. limit 20 to (animals and humans) - 23. 21 not 22 - 24. 20 not 23 - 25. limit 24 to (editorial or letter) - 26. 24 not 25 ## **HTA Database** - 1. exp Hepatitis C/di [Diagnosis] - 2. Hepacivirus/ - 3. (hepatitis c or hcv or hepacivirus*).tw. - 4. exp Hepatitis C Antigens/ or exp Hepatitis C Antibodies/ or exp Hepatitis C/ - 5. 2 or 3 or 4 - 6. Mass Screening/ - 7. (screen* or test*).tw. - 8. 6 or 7 - 9. 5 and 8 - 10. 1 or 9 - 11. limit 10 to english language ### **EMBASE** - 1. exp hepatitis C/di [Diagnosis] - 2. exp Hepatitis C virus/di [Diagnosis] - 3. 1 or 2 - 4. exp hepatitis C/ or exp Hepatitis C virus/ - 5. exp hepatitis C antibody/ - 6. exp hepatitis C antigen/ - 7. (hepatitis c or hcv or hepacivirus*).tw. - 8. 4 or 5 or 6 or 7 - 9. exp screening/ - 10. (screen* or test*).tw. - 11. 9 or 10 - 12. 8 and 11 - 13. 3 or 12 - 14. exp economic evaluation/ - 15. exp economic aspect/ - 16. hidden markov model/ - 17. (economic evaluation* or cost benefit* or cost effective* or cost utilit* or cost minimization or cost or costs or costing or (economic adj5 model*) or economics).tw. - 18. 14 or 15 or 16 or 17 - 19. 13 and 18 - 20. limit 19 to english language - 21. limit 20 to animal studies - 22. limit 20 to (human and animal studies) - 23. 21 not 22 - 24. 20 not 23 - 25. limit 24 to (editorial or letter) - 26. 24 not 25 - 27. limit 26 to conference abstract - 28. 26 not 27 ## **Econlit** (hepatitis c or hcv or hepacivirus*) AND (screen* or test*) ## Appendix B: CHEC List[1] | Item
Number | CHEC-list | |----------------|---| | 1 | Is the study population clearly described? | | 2 | Are competing alternatives clearly described? | | 3 | Is a well-defined research question posed in answerable form? | | 4 | Is the economic study design appropriate to the stated objective? | | 5 | Is the chosen time horizon appropriate in order to include relevant costs and consequences? | | 6 | Is the actual perspective chosen appropriate? | | 7 | Are all important and relevant costs for each alternative identified? | | 8 | Are all costs measured appropriately in physical units? | | 9 | Are costs valued appropriately? | | 10 | Are all important and relevant outcomes for each alternative identified? | | 11 | Are all outcomes measured appropriately? | | 12 | Are outcomes valued appropriately? | | 13 | Is an incremental analysis of costs and outcomes of alternatives performed? | | 14 | Are all future costs and outcomes discounted appropriately? | | 15 | Are all important variables, whose values are uncertain, appropriately subjected to sensitivity analysis? | | 16 | Do the conclusions follow from the data reported? | | 17 | Does the study discuss the generalizability of the results to other settings and patient/client groups? | | 18 | Does the article indicate that there is no potential conflict of interest of study researcher(s) and funder(s)? | | 19 | Are ethical and distributional issues discussed appropriately? | ^{*}Direct excerpt from publication # **Appendix C: Characteristics of Included Studies** | Author,
Year,
Country | Population | Model | Perspective | Comparators | Clinical
Pathway | Time
Horizon | Discount
Rate | Outcome | Clinical Inputs | Prevalence
Estimate | Adherence
Estimate | Preference
measurement | Included Cost
Inputs | Assessment of
Uncertainty | Currency
(Year) | |--------------------------------------|--|-------|-------------|--|---|-----------------|--------------------------|---|---|--|--|---|---|--|--------------------| | Drug Users | | | | | | 1 | 1 | | 1 | | | | | | | | Castelnuovo[2], 2006, United Kingdom | Hypothetical cohort of 1,000 people age 37 years old, based on data from the Trent HCV Study Cohort Database | CUA | Payer | Systematic case-finding (screening program) compared to no systematic case finding (no screening program). Treatment with PEGIFN and ribavirin in all diagnosed cases. | Testing or no testing (natural history of disease), positive or negative ELISA test, PCR test if positive ELISA test, diagnosis, treatment | Lifetime | Costs: 6% Benefits: 1.5% | Costs and consequences of case-finding and no-case-finding, cost per life-year-gained, QALY | Prevalence HCV,
Genotype
distribution | Pooled estimate of HCV prevalence in intravenous drug users (Bird et al.): 49% (95% CI 38-61%) | Acceptance of testing rate for IDU population using ELISA test (Serfaty et al): 49% Acceptance of testing rate for IDU population using PCR test (Irving et al): 39% Acceptance of testing rate for IDU population using Iver biopsy (Irving et al): 89.6% | EQ-5D (UK
algorithm) from
the HTA mild
HCV Trial and
cost-
effectiveness
model
(reference) | ELISA test, communicating results, PCR, genotyping, liver biopsy, counselling and harm reduction, treatment, referral to treatment, annual cost by disease state, liver transplant, annual cost for liver transplant wait list, costs related to casefinding (health promotion information session, communication of results, referral, pretest discussion) | Sensitivity Analysis (all parameters varied in one- way sensitivity analysis) Probabilistic Sensitivity Analysis (Gender, alcohol use, ALT subgroups, relative risk, costs, transition probabilities, prevalence) | £ (2004) | | Helsper[3],
2012,
Netherlands | Drug Users | CUA | Payer | No screening program compared to "drug user campaign" which targeted drug users through addiction care centers | Screening campaign or no screening campaign, test or no test, positive or negative test result, diagnosis or no diagnosis, treatment or no treatment, response to treatment or no response to treatment | Lifetime | Costs: 4% Benefits: 1.5% | Costs and
consequences
of screening
strategies and
no screening
strategy, cost
per life-year-
gained, QALY | Distribution of fibrosis stage, patients eligible for treatment | Not reported | Referral rate: 71.43% | Not reported | Diagnostic tests and consultations before treatment, medication and diagnostic tests during treatment (by fibrosis stage), campaign costs (training, project organization, material and travel expenses, consultation costs) | Sensitivity
Analysis
Probabilistic
Sensitivity
Analysis | €
(2007) | | Author,
Year,
Country | Population | Model | Perspective | Comparators | Clinical
Pathway | Time
Horizon | Discount
Rate | Outcome | Clinical Inputs | Prevalence
Estimate | Adherence
Estimate | Preference
measurement | Included Cost
Inputs | Assessment of
Uncertainty | Currency
(Year) | |---|---|-------|-----------------|---
--|-----------------|--------------------------|---|---|---|--|---|--|--|--------------------| | Leal[4],
1999,
United
Kingdom | Intravenous drug
users in south
and west health
region of the UK. | CUA | Not
reported | Screening
program or no
screening program
for intravenous
drug users who
use the health care
system | Screening or no screening, acceptance or test or no acceptance of test, ELISA and PCR testing, biopsy or no biopsy to confirm, diagnosis, treatment or no treatment, response or no response to treatment. | 50 years | Costs: 6% Benefits: 6% | Costs and
consequences
of screening
strategies and
no screening
strategy, cost
per life-year-
gained, QALY | Stage of liver
disease,
complications,
response to
treatment, costs | HCV positive: 60% | Acceptance of testing: 80% Failure to complete liver biopsy: 45% Acceptance of initial treatment: 50% | From Bennett et al. | Screening and diagnosis (counselling, ELISA, PCR, liver biopsy), treatment, adverse events, monitoring (PCR negative result, mild disease, treatment monitoring), cost of screening program | Sensitivity analysis (distribution of liver disease stage, acceptance of treatment, proportion of sustained treatment response, utilities, disease progression, discounting, cost of IFNa, cost of liver biopsy, total program cost) | £ (1997) | | Stein[5],
2003,
United
Kingdom | Hypothetical cohort of 246,636 attending a genito-urinary clinic annually (61% former intravenous drug users) | CUA | Payer | Screening program of former intravenous drug users attending a genito-urinary clinic compared to no screening program | Screening or no screening, positive or negative ELISA test, PCR test if positive ELISA test, offered liver biopsy, diagnosis, treatment | 50 years | Costs: 6% Benefits: 1.5% | Costs and consequences of screening strategies and no screening strategy, cost per life-year-gained, QALY | Sensitivity and specificity of ELISA and PCR, proportion with mild, moderate or severe disease, complications, progression to cirrhosis, decompensated cirrhosis, hepatic carcinoma, death, transplant, second transplant | HCV prevalence
at genito-urinary
clinic (Goldberg
et al): 1.5% | Acceptance of testing rate for individuals using ELISA test (Serfaty et al): 49% Acceptance of testing rate for individuals using PCR test (Clinician Advisory Group): 100% Acceptance of testing rate for individuals using biopsy (Jowett et al): 77% Acceptance of treatment (Jowett et al): 50% | VAS for HCV patients (Cotler et al) | ELISA, PCR, Counselling, liver biopsy, medical visits, medications, inpatient day, hepatocellular carcinoma inpatient cost, chronic HCV infection, hepatic encephalopath y inpatient, variceal bleed inpatient, liver transplant | Sensitivity Analysis (all parameters in one-way sensitivity analysis) Scenario Analysis (10% and 20% of those who present are screened) | £ (2001) | | Stein[6],
2004,
United
Kingdom | Hypothetical
cohort of former
intravenous drug
users | CUA | Payer | Screening
program of former
intravenous drug
users compared to
no screening
program. | Screening or no
screening,
positive or
negative
ELISA test,
PCR test if
positive ELISA | 50 years | Costs: 6% Benefits: 1.5% | Costs and
consequences
of screening
strategies and
no screening
strategy, cost
per life-year- | Sensitivity and
specificity of
ELISA and PCR,
probabilities of
cirrhosis,
decompensated
cirrhosis | HCV of
individuals who
go to drug
services
(Department of
Health): 32% | Adherence to
treatment
(Barbaro et
al): 100% | VAS for HCV
patients (Cotler
et al) | Doctor
appointment,
out-patient and
in-patient
visits,
treatment,
hospitalization | Sensitivity Analysis (current intravenous drug users, prevalence of HCV, acceptance of ELISA or PCR, | £ (2002) | | Author,
Year,
Country | Population | Model | Perspective | Comparators | Clinical
Pathway | Time
Horizon | Discount
Rate | Outcome | Clinical Inputs | Prevalence
Estimate | Adherence
Estimate | Preference
measurement | Included Cost
Inputs | Assessment of
Uncertainty | Currency
(Year) | |--------------------------------------|--|-------|-------------|--|--|-----------------|------------------------|---|--|--|--|---|---|--|------------------------| | · | | | | | test, diagnosis,
treatment,
cirrhosis,
decompensated
cirrhosis,
hepatocellular
carcinoma,
transplant,
death | | | gained, QALY | hepatocellular
carcinoma, liver
transplant,
second liver
transplant, death,
overdose
mortality | | | | s, liver
transplant | sensitivity and
specificity of
ELISA or PCR in
one-way
sensitivity
analysis) | | | Tramarin[7],
2008,
Netherlands | Hypothetical cohort of intravenous drug users living in the Veneto Region in 2007 | CUA | Societal | Screening program of intravenous drug users compare to no screening. | "Patients faced annual probabilities of progression, complication of cirrhosis, mortality risks from decompensated cirrhosis and hepatocellular carcinoma. Patient with decompensated cirrhosis could receive an orthotopic liver transplantWe developed an epidemiologica I model of HCV infection which includes acquisition of infection, clinical presentation (symptomatic and asymptomatic) probability of persistence and risk of progression to end stage of liver disease." | Lifetime | Costs: 3% Benefits: 3% | Costs and consequences of screening strategies and no screening strategy, cost per life-year-gained, QALY | Probabilities of symptomatic and asymptomatic HCV, spontaneous clearance, progression, cirrhosis, decompensated cirrhosis, hepatocellular carcinoma, death, and liver transplant | Randomized control trial HCV prevalence estimate of symptomatic and asymptomatic (Manns et al): 0.16, 0.84 | Complete compliance | A variety of literature-based sources were used to provide utility data (Short Form 36 Health Survey data). | Screening, annual costs (screening, cirrhosis, transplantation in hepatocellular carcinoma), monthly costs (acute therapy, chronic therapy) | Sensitivity Analysis (prevalence of genotypes 1 and 4) | €
(Not
Reported) | | High Risk | | 1 | l | I | 1 | I. | 1 | | l . | ·I | l . | | I | l . | l | | Batra[8],
2001,
England | Real cohort of
1879 people in
West Kent,
England, tested
for HCV in
1998/1999
(former drug
users, received
clotting factors, | CEA | Payer | No screening and
liver transplant
compared to
opportunistic
screening and
treatment | Screening or no
screening, test
positive or
negative, liver
biopsy or no
biopsy, biopsy
positive or
negative,
diagnosis and | Not
reported | Costs: 6% Benefits: 6% | Screening effectiveness, number needed to screen to prevent 1 patient developing cirrhosis, marginal cost | Distribution of
fibrosis
stage,
sensitivity and
specificity of
tests, risk of
developing
cirrhosis | 8% | Acceptance
of treatment
given
diagnosis:
61% | Not reported | Medications, tests | Sensitivity analysis (proportion of high risk people accepting testing, proportion who receive RNA test, proportion who accept liver | £ (1999) | | Author,
Year,
Country | Population | Model | Perspective | Comparators | Clinical
Pathway | Time
Horizon | Discount
Rate | Outcome | Clinical Inputs | Prevalence
Estimate | Adherence
Estimate | Preference
measurement | Included Cost
Inputs | Assessment of
Uncertainty | Currency
(Year) | |--------------------------------------|---|-------|-----------------|--|---|-----------------|------------------------|---|--|---|--|--|--|---|--------------------------| | Sumy | long term hemodialysis, abnormal alanine aminotransferase, prior recipients of transfusion or organ transplants, exposed healthcare workers, children of HCV women) | | | | staging or no
diagnosis and
staging,
treatment or no
treatment | | | of preventing 1 case of cirrhosis, net present value of opportunistic HCV screening compared to liver transplant | | | | | | biopsy
proportion who
are Knodell >6,
proportion who
accept treatment
requiring
genotyping) | | | Lapane[9],
1998,
United States | Real cohort of patients (n=13,997) who self-referred for HCV screening were assessed based on risk factor and modeled (former IV drug use, sex with IV drug user, history of blood transfusion, age, gender, hemodialysis, hepatitis B vaccination, health care professional) | CEA | Not
Reported | Comparing no screening with four screening with four screening strategies/models: 1. Screening only when predicated probability of infection exceeds 7%, 2. Screening only for individuals who have significant risk based on all questionnaire questions 3. Screening only using questions that did not carry stigma (no questions about drug use etc.) 4. Screening only for patients with elevated ALT levels | Not Reported | Not
Reported | Not
reported | Cost per case
detected and
average cost
per 100 people
screened | (Primary data collection) | Model 1: 20%
Model 2: 29%
Model 3: 25%
Model 4: 12% | Not reported | Not Reported | Average cost
of testing
(primary data
collection) | Not Reported | USD
(Not
Reported) | | Liu[10],
2013,
United States | High risk
individuals who
are 40-74 years
old (drug history
use, blood
transfusion
before 1992, and
multiple sexual
partners) | CUA | Societal | No screening
versus risk-factor
guided screening | Screening or no
screening,
treatment with
standard
therapy,
universal triple
therapy or IL-
28B-guided
triple therapy | Lifetime | Costs: 3% Benefits: 3% | Costs and
consequences
of screening
strategies and
no screening
strategy, cost
per life-year-
gained, QALY | Mortality rates
(NHANESIII
data),disease
progression rates
(Liu et al) | Various
estimates (by sex
and race)
calculated using
the National
Health and
Nutrition
Examination
Survey (2001-
2008) | Acceptance of treatment for those with fibrosis stage F0-F1: 30% Acceptance of treatment for those with fibrosis stage F2-F4: 39% | Derived from the
Medical
Expenditure
Panel Survey | Screening (ELISA, RIBA and RNA tests, counselling, liver biopsy, FibroTest), drug and medical care related to treatment, and annual care by fibrosis stage | Deterministic sensitivity analysis (cohort age, HCV prevalence, screening-related factors, treatment-related factors) Probabilistic Sensitivity Analysis (cohort characteristics, distribution of fibrosis stages, HCV status) | USD (2010) | | Author,
Year,
Country | Population | Model | Perspective | Comparators | Clinical
Pathway | Time
Horizon | Discount
Rate | Outcome | Clinical Inputs | Prevalence
Estimate | Adherence
Estimate | Preference
measurement | Included Cost
Inputs | Assessment of
Uncertainty | Currency
(Year) | |---|--|-------|-------------|--|--|-----------------|-----------------------------|--|--|--|---|--|--|--|--------------------| | Miners[11],
2014,
United
Kingdom | Immigrants from
the Indian
subcontinent | CUA | Payer | No screening
versus letter
inviting people to
opt-out and
subsequent phone
call to receive
screening among
those who did not
opt-out | Screening or no screening | Lifetime | Costs: 3.5% Benefits: 3.5% | Costs and
consequences
of screening
strategies and
no screening
strategy, cost
per life-year-
gained, QALY | Probability of
SVR in
mild/moderate
disease, SVR for
compensated and
decompensated
cirrhosis,
probability of
leaving the UK | From study: 3.2% | Treatment referral and attendance: 45% | Derived from UK
RCT of mild
disease and a
subsequent study
of latter disease | Intervention
cost, antiviral
treatment,
health-state-
specific costs | Deterministic
sensitivity
analysis
Probabilistic
Sensitivity
Analysis | £ (2010) | | Nakamura[12]
,
2008,
Japan | Cohort of 42,538
high-risk
individuals from
2003 to 2006
(showing a high
level of
aminotransferase,
undergone major
operation, or
received a blood
transfusion
during child
birth) | CEA | Payer | Screening
program of high-
risk individuals
compared to no
screening
program. | Screening or no screening, diagnosis, treatment, cirrhosis, decompensated cirrhosis, death | Lifetime | Costs: 3% Benefits: 3% | Costs and consequences of screening strategies and no screening strategy, cost per life-year-gained (not adjusted for quality of life) | Probability of compensated cirrhosis, decompensated cirrhosis, hepatocellular carcinoma, death | HCV prevalence
per age group:
0.81%
40-49: 0.38%
50-59: 0.31%
60-69: 0.66%
>70: 1.60% | Acceptance
of treatment
(assumption)
: 100% | Life expectancy | HCV antibody test, core antigen test, PCR test, combination therapy (inpatient and outpatient), post SVR (outpatient), chronic hepatitis (outpatient), compensated cirrhosis (outpatient), decompensated cirrhosis (inpatient and outpatient), hepatocellular carcinoma (inpatient and outpatient) | Sensitivity analysis (treatment effectiveness, transition probabilities, infection rates of HCV, price of drugs) | \$
(2007) | | Pregnant | | ı | I. | L | | | I. | l | I
| I. | | L | | <u>l</u> | | | Plunkett[13],
2004,
United States | Hypothetical
cohort of low-
risk pregnant
women | CUA | Payer | Screening program of low- risk pregnant women (treatment, treatment and elective C- section) compared to no screening. | Screening or no screening, diagnosis, treatment, cirrhosis, decompensated cirrhosis, transplant, death | Lifetime | Costs: 3% Benefits: 3% | Costs and
consequences
of screening
strategies and
no screening
strategy, cost
per life-year-
gained, QALY | Sensitivity and specificity of ELISA and PCR, probability of mild to moderate hepatitis for mother and child, cirrhosis, decompensated cirrhosis, hepatocellular cancer, transplant, death, response to treatment, delivery (elective, emergent, vaginal), transmission (elective, | HCV infection
(Centers for
disease control
and Prevention,
Alter et al,
Silverman et al):
1% | Receive
treatment if
screened
(McHutchins
on et al):
70% | A variety of
literature-based
sources were
used to provide
utility data (Short
Form 36 Health
Survey data).
Pregnancy
delivery utilities
(assumption) | Counselling,
ELISA, PCR,
genotype,
delivery cost,
annual cost
(cirrhosis,
decompensated
cirrhosis,
hepatocellular
cancer,
transplant,
treatment,
delivery) | Sensitivity Analysis (all parameters in one-way analysis and HCV transmission and prevalence in multi-way) | USD (2003) | | Author,
Year,
Country | Population | Model | Perspective | Comparators | Clinical
Pathway | Time
Horizon | Discount
Rate | Outcome | Clinical Inputs | Prevalence
Estimate | Adherence
Estimate | Preference
measurement | Included Cost
Inputs | Assessment of
Uncertainty | Currency
(Year) | |--|---|-------|-------------|---|--|-----------------|-------------------------------------|---|---|--|-----------------------|---------------------------|---|---|--------------------| | | | | | | | | | | emergent,
vaginal) | | | | | | | | Selvapatt[14],
2015,
United
Kingdom | Pregnant women
attending
antenatal clinics
in St Mary's
Hospital in
London between
November 1
2003 and March
2013 | CUA | Payer | Screening of pregnant women compared to no screening. | Screening or no screening, diagnosis, treatment (base, all on sofosbuvir, sofosbuvir after RBV failure), fibrosis stages cirrhosis, decompensated cirrhosis, transplant, death | Lifetime | Costs:
3.5%
Benefits:
3.5% | Costs and
consequences
of screening
strategies and
no screening
strategy, cost
per life-year-
gained, QALY | Probability of
HCV infection,
fibrosis stage
transitions, SVR,
liver transplant
decompensated
cirrhosis,
hepatocellular
carcinoma | From study:
0.38% | Assumption: 100% | Not reported | Testing,
antibody and
confirmatory
test,
genotyping,
liver biopsy,
antiviral
therapy | Sensitivity Analysis (increasing and decreasing age a diagnosis by 5 years, adjusting SVR for RBV, treatment for all newly diagnosed patients, prevalence) Scenario analysis (sofosbuvir as initial treatment, | £ (2013) | | | | | | | | | | | | | | | | or sofosbuvir
after failure with
RBV) | | | Urbanus[15],
2013,
Netherlands | Hypothetical cohort of all pregnant women | CEA | Payer | Screening of pregnant women over 31 years of age compared to no screening. | Screening or no screening, positive or negative for HCV, transition through stages of cirrhosis, decompensated cirrhosis, hepatocellular carcinoma, liver transplant, or die | Lifetime | Costs: 4% Benefits: 1.5% | Costs and life
years of
screening
pregnant
women, cost
per life-year
gained | Probability of HCV infections, successful treatments, new protease inhibitor by genotype, standard of care by genotype possible future regimen by genotype, transition to cirrhosis, decompensated cirrhosis, hepatocellular carcinoma, liver transplant, death | Prevalence
estimate of all
women
(Lindenburg et
al): 0.2% | Not Reported | Life years | Anti-body HCV test, RNA-test, chronic infection (per year), New protease inhibitor by genotype, standard of care by genotype possible future regimen by genotype, costs related to disease progression (decompensate d cirrhosis, hepatocellular carcinoma, liver transplant, after liver transplant) | Sensitivity Analysis (all parameters in one-way analysis) Probabilistic Sensitivity Analysis (all transition probabilities) | €
(2011) | | Urbanus,[15]
2013,
Netherlands | Hypothetical
cohort of first-
generation non-
Western pregnant
women | CEA | Payer | Screening of
pregnant women
29 for first-
generation non-
western women to
no screening. | Screening or no
screening,
positive or
negative for
HCV,
transition
through stages
of cirrhosis,
decompensated | Lifetime | Costs: 4% Benefits: 1.5% | Costs and life
years of
screening
pregnant
women, cost
per life-year
gained | Probability of
HCV infections,
successful
treatments, new
protease inhibitor
by genotype,
standard of care
by genotype
possible future | Prevalence
estimate of first-
generation non-
western pregnant
women
(Lindenburg et
al): 0.43% | Not Reported | n/a | Anti-body HCV test, RNA-test, chronic infection (per year), New protease inhibitor by genotype, | Sensitivity Analysis (all parameters in one-way analysis) Probabilistic Sensitivity Analysis (all | €
(2011) | | Enterior Properties Prope | Author,
Year,
Country | Population | Model | Perspective | Comparators | Clinical
Pathway | Time
Horizon | Discount
Rate | Outcome | Clinical Inputs | Prevalence
Estimate | Adherence
Estimate | Preference
measurement | Included Cost
Inputs | Assessment of
Uncertainty | Currency
(Year) | |--|-----------------------------|---------------------------------------|-------|-------------|--|--|---------------------------------|------------------
---|---|--|---|--|---|---|--------------------| | Hypothetical cochort of United States Payer Case finding (corening Program). Program | Country | | | | | hepatocellular
carcinoma,
liver transplant, | | | | genotype,
transition to
cirrhosis,
decompensated
cirrhosis,
hepatocellular
carcinoma, liver | | | | care by genotype possible future regimen by genotype, costs related to disease progression (decompensate d cirrhosis, hepatocellular carcinoma, liver transplant, after liver | | | | prisoners (current, and onto reception into prison for 1, 5, or 10 years) Sitton[17], Egobor of prisoners on reception into prison of the first year of prisoners on reception into prison of the first year of prisoners on reception into prison of the first year of prisoners on reception into prison of the first year of the general population of the general population of the general population of the general prison p | | 1 | 1 20- | | | | 1 | T | | | T-2- | | | | | | | 2006, Cohort of United United Prisoners on reception into prison Kingdom The program of pr | 2016,
United States | cohort of
prisoners | | | prisoners (current,
and onto reception
into prison for 1,
5, or 10 years) | 1-time risk-
based
screening of
those
incarcerated
and entrants
who are current
or former IDU
for 1 year, 1-
time opt-out
screening of
those
incarcerated
and entrants for
1 year with
opt-out
screening of
entrants for 1
year, 5 years,
or 10 years | | reported | consequences
of screening
strategies and
no screening
strategy, cost
per life-year-
gained, QALY;
both for those
within the
prison and that
affects on the
general
population | transmission (with or without known HCV status), development of chronic HCV, rate of progression through each stage of fibrosis, probabilities of cirrhosis, decompensated cirrhosis hepatocellular carcinoma, liver transplant, death, | | | weights (0-1) that
are adjusted by
age and sex | (antibody and RNA), genotype testing, antiviral treatment, cirrhosis, decompensated cirrhosis, hepatocellular carcinoma, liver transplant | analysis (all key
model
parameters,
discounted
drugs) | USD (2014) | | Sutton[18], Hypothetical CUA Payer Screening Screening or no 80 years Costs: Costs and Sensitivity and HCV prevalence Acceptance HAI from a Various Sensitivity # | 2006,
United | cohort of prisoners on reception into | CEA | Payer | (screening
program)
compared to no
Case finding (no
screening
program). | of verbal
screening
questions or no
questions,
ELISA and if
positive then
PCR, only
screening
followed. No
treatment | testing (no
markov
model) | 3.5% Benefits: | consequences
of case-finding
and no-case-
finding, cost
per HCV
infection | positive (whether
have positive test
or not), report
intravenous drug
use, sensitivity
and specificity of
ELISA and PCR | first year of
being an
intravenous drug
user (Sutton et
al): 16.08%
HCV infection in
subsequent years
of being an
intravenous drug
user (Suttong et | of testing rate for prisoners using ELISA test (Stein et al): 85% Acceptance of testing rate for prisoners using PCR (assumption) : 100% | Not applicable HAI from a | doctor wages,
ELISA and | analysis (all
parameters in
one-way
sensitivity | £ (2004) | | Author,
Year, | Population | Model | Perspective | Comparators | Clinical
Pathway | Time
Horizon | Discount
Rate | Outcome | Clinical Inputs | Prevalence
Estimate | Adherence
Estimate | Preference
measurement | Included Cost
Inputs | Assessment of
Uncertainty | Currency
(Year) | |--|--|-------|-------------|--|---|-----------------|---------------------------|---|--|---|---|---|---|--|--------------------| | Country 2008, United Kingdom | cohort of prisoners on reception into prison | | | program of prisoners on reception into prison compare to no screening program. | screening, cirrhosis, decompensated cirrhosis, hepatocellular carcinoma, liver transplant, death | | 3.5%
Benefits:
3.5% | consequences
of screening
strategies and
no screening
strategy, cost
per life-year-
gained, QALY | specificity of ELISA, probabilities of cirrhosis, decompensated cirrhosis hepatocellular carcinoma, liver transplant, death, overdose mortality, | in prisoners
(Weild et al): 7% | of testing rate for prisoners using ELISA test (Skipper et al, Horne et al): 10.25% Acceptance of testing rate for community using ELISA test (Serfaty et al): 49% Acceptance of testing rate for prisoners using PCR test (Horne et al): 92% Acceptance of testing rate for prisoners using PCR test (Horne et al): 92% | previous study
(Castelnuovo et
al) | interviews and communicating results, ELISA, PCR, genotyping, offering treatment, treatment | Analysis (all parameters varied in one-way sensitivity analysis) Scenario analysis (Discount rates, utilities) Probabilistic Sensitivity Analysis (all parameters) | (2004) | | Birth Cohort Coffin[19], 2012, United States | Hypothetical
cohort of
individuals born
between 1945-
1965 | CUA | Societal | No screening
program
compared to
screening program
for those born
between1945-
1965 and living in
the United States | Testing or no testing (natural history of disease), positive of negative test, positive or negative PCR test, Referral or no referral to treatment, diagnosis, treatment, treatment failure or response | Lifetime | Costs: 3% Benefits: 3% | Costs and
consequences
of screening
strategies and
no screening
strategy, cost
per life-year-
gained, QALY | Distribution of fibrosis stage at time of diagnosis, rate of progression through each stage of fibrosis, spontaneous presentation outside screening, rates of sustained viral response | Proportion of general US adult population HCV positive: 0.16% (range: 0.13-0.20%) | Assumption that 15% of the population born between 1945-1965 would be screened, based on 5-60% uptake of screening (Bassett et al.). | A variety of
literature-based
sources were
used to provide
utility data (Short
Form 36 Health
Survey data). | HCV antibody screening, RNA polymerase chain reaction test cost, Telaprevirbased therapy cost, boceprevirbased therapy costs, physician costs, disease management cots, and liver transplant and management costs | Sensitivity Analysis (all parameters varied in one- way sensitivity analysis) Scenario Analysis (varying all parameters to be unfavorable) Probabilistic Sensitivity Analysis (all parameters varied) | USD (2010) | | Author,
Year,
Country | Population | Model | Perspective | Comparators | Clinical
Pathway | Time
Horizon | Discount
Rate | Outcome | Clinical Inputs | Prevalence
Estimate | Adherence
Estimate | Preference
measurement | Included Cost
Inputs | Assessment of
Uncertainty | Currency
(Year) | |--|--|-------------------|-------------
---|---|-----------------|-----------------------------|--|---|---|--|--|--|---|---| | Liu[10],
2013,
United States | Individuals who
are 40-74 years
old as of ? | CUA | Societal | No screening
versus birth-
cohort screening
program | Screening or no
screening,
treatment with
standard
therapy,
universal triple
therapy or IL-
28B-guided
triple therapy | Lifetime | Costs: 3% Benefits: 3% | Costs and
consequences
of screening
strategies and
no screening
strategy, cost
per life-year-
gained, QALY | Mortality rates
(NHANESIII
data),disease
progression rates
(Liu et al) | Various
estimates (by sex
and race)
calculated using
the National
Health and
Nutrition
Examination
Survey (2001-
2008) | Acceptance of treatment for those with fibrosis stage F0-F1: 30% Acceptance of treatment for those with fibrosis stage F2-F4: 39% | Derived from the
Medical
Expenditure
Panel Survey | Screening (ELISA, RIBA and RNA tests, counselling, liver biopsy, FibroTest), drug and medical care related to treatment, and annual care by fibrosis stage | Sensitivity analysis (cohort age, HCV prevalence, screening-related factors, treatment-related factors) Probabilistic Sensitivity Analysis (cohort characteristics, distribution of fibrosis stages, HCV status) | USD (2010) | | McEwan[20],
2013,
United States | Individuals born
between 1945-
1965 | CUA | Payer | Birth cohort
screening
compared to risk-
based screening
(status quo) | Risk based
testing or birth
cohort based
testing, HCV
positive or
negative,
diagnosis,
treatment or no
treatment | Lifetime | Costs: 3.5% Benefits: 3.5% | Costs and
consequences
of screening
strategies and
no screening
strategy, cost
per life-year-
gained, QALY | Distribution of
fibrosis stage
(economic model
by McGarry et
al.) | Assumption that
1.77% of
population tests
positive for HCV | Acceptance
of Screening:
91.21% | Derived from a
variety of sources | Drug and
medical care
related to
treatment and
management,
cost of testing | Not clear what
parameters were
assessed for
uncertainty or
approach | USD
(Not
reported) | | McGarry[21],
2012,
United States | Birth Cohort:
individuals born
between 1946-
1970 with no
HCV diagnosis | CUA
and
CEA | Payer | Birth cohort
screening
compared to risk-
based screening
(status quo) | Screening or no screening, HCV positive or HCV negative, diagnosis or no diagnosis, treatment or no treatment | Lifetime | Costs: 3% Benefits: 3% | Cases of
advanced liver
disease
avoided, HCV
deaths averted,
QALY | Disease progression (model by Davis et al.), mortality (U.S. population averages reported in Arias et al.), proportion of population screened (administrative data) | Not reported | Acceptance
of treatment
over 5 years:
100% | Derived from a
variety of
literature sources | Screening costs
(ELISA test,
PCR test,
biopsy), cost of
diagnosis, cost
of treatment,
cost of
monitoring,
cost by annual
health state, | Sensitivity Analysis (percentage of birth cohort screened, treatment eligibility, treatment rates, efficacy rates, time horizons of 10 and 25 years, progression rates between fibrosis stages, proportion of non-progressing fibrosis) | USD (2010) | | Nakamura[12]
,
2008,
Japan | Cohort of 99,001
individuals living
in Japan age 40-
70, from 2003 to
2006 | CEA | Payer | Screening
program of birth
cohort (40-70
years old)
compared to no
screening
program. | Screening or no
screening,
diagnosis,
treatment,
cirrhosis,
decompensated
cirrhosis, death | Lifetime | Costs: 3% Benefits: 3% | Costs and
consequences
of screening
strategies and
no screening
strategy, cost
per life-year-
gained (not
adjusted for
quality of life) | Probability of
compensated
cirrhosis,
decompensated
cirrhosis,
hepatocellular
carcinoma, death | HCV prevalence
per age group:
0.36%
40-49: 0.15%
50-59: 0.18%
60-69: 0.36%
>70: 0.61% | Acceptance
of treatment
(assumption)
: 100% | Life expectancy | HCV antibody
test, core
antigen test,
PCR test,
combination
therapy
(inpatient and
outpatient),
post SVR
(outpatient),
chronic
hepatitis
(outpatient), | Sensitivity analysis (treatment effectiveness, transition probabilities, infection rates of HCV, price of drugs in one-way sensitivity analysis) | \$ (Costs from Japan, possibly changed to USD) (2007) | | Author,
Year,
Country | Population | Model | Perspective | Comparators | Clinical
Pathway | Time
Horizon | Discount
Rate | Outcome | Clinical Inputs | Prevalence
Estimate | Adherence
Estimate | Preference
measurement | Included Cost
Inputs | Assessment of
Uncertainty | Currency
(Year) | |-------------------------------------|---|-------|-------------|--|--|-----------------|-----------------------------|---|--|--|---|---|--|---|--------------------| | | | | | | | | | | | | | | compensated cirrhosis (outpatient), decompensated cirrhosis (inpatient and outpatient), hepatocellular carcinoma (inpatient and outpatient) | | | | Rein[22],
2012,
United States | Hypothetical
cohort of
individuals born
between 1945
and 1965 that
annually attend
primary care
provider | CUA | Societal | Screening program of birth cohort (born 1945-1965) treated with either PEG-IFN+R alone or PEG-IFN+R and direct acting anti-viral compared to no screening program. | Screening or no screening, diagnosis, treatment, cirrhosis, decompensated cirrhosis, transplant, death | Lifetime | Costs: 3% Benefits: 3% | Costs and consequences of screening strategies and no screening strategy, cost per life-year-gained, QALY | Probability of refusing treatment, genotype, cirrhosis, decompensated cirrhosis, hepatocellular carcinoma, transplant, death | Stratified by age,
sex, race/
ethnicity, history
of intravenous
drug use, and
history of HCV
(values
unknown) | Acceptance of screening if intervention offered (Honeycutt et al): 91% Acceptance of screening if intervention not offered (Honeycutt et al): 18% Receive treatment after positive test (Falck et al and Zeuzem et al): 40.8% | A variety of
literature-based
sources were
used to provide
utility data (Short
Form 36 Health
Survey data and
Standard
Gamble). | Screening, receiving results, treatment per genotype, METAVIR stages, cirrhosis, decompensated cirrhosis, hepatocellular carcinoma, liver transplant | Probabilistic
Sensitivity
Analysis (QALY
losses, discount
rate, SVR for
genotypes,
proportion that is
genotype 1, cost
of screening and
standard
treatment, costs
and effectiveness
of treatment) | USD (2009) | |
Ruggeri[23],
2013,
Italy | Hypothetical
cohort of healthy
individuals 35-65
years old | CUA | Payer | Screening program of healthy individuals (≥35 years old) compared to no screening | Screening or no screening, diagnosis, treatment, cirrhosis, decompensated cirrhosis, hepatocellular carcinoma, transplant, death | 40 years | Costs: 3.5% Benefits: 3.5% | Costs and
consequences
of screening
strategies and
no screening
strategy, cost
per life-year-
gained, QALY | Prevalence of
HCV in each age
group, efficacy
of treatments,
distribution of
genotypes | HCV prevalence
per age group
(Ansaldi et al):
15-30: 2%
31-45: 6%
46-60: 7%
>60: 5% | Not Reported | HUI (Nakamura
et al, Sullivan et
al, Siebert et al) | ELISE and PCR cost, hepatology consultation, laboratory tests, ultrasounds, drugs, abdominal echotomagraph y, esophageal duodenoscopy, esofagogastrod uodenoscopy, hepatic ecography, tumor markers, computed tomography | Sensitivity Analysis (discount rate, costs, genotype, effectiveness, and utility in one way sensitivity analysis) Probabilistic Sensitivity Analysis (all parameters) | € (2009) | | Wong[24],
2014, | Hypothetical cohort of | CUA | Payer | Screen and Treat with pegylated | Screening or no screening, | Lifetime | Costs: 5% | Costs and consequences | Distribution of fibrosis stages | Prevalence
estimate of HCV | Acceptance of testing | HUI (Mark 2) for patients with | Annual costs
of early late | Scenario
Analysis | CAD
(2012) | | Author,
Year,
Country | Population | Model | Perspective | Comparators | Clinical
Pathway | Time
Horizon | Discount
Rate | Outcome | Clinical Inputs | Prevalence
Estimate | Adherence
Estimate | Preference
measurement | Included Cost
Inputs | Assessment of
Uncertainty | Currency
(Year) | |---------------------------------------|---|-------|-------------|---|---|-----------------|------------------------|---|--|---|---|---|---|--|--------------------| | Canada | individuals 25-64
years old
currently living
in Canada | | | interferon plus
ribavirin, and
Screen and Treat
with direct-acting
antiviral agents,
compared to no
screening | positive or
negative for
HCV,
transition
through stages
of fibrosis and
cirrhosis, liver
transplant, or
die | | Benefits: 5% | of screening
strategies and
no screening
strategy, cost
per life-year-
gained, QALY | per age group, Probability of annual fibrosis progression, Probability of annual cirrhosis progression, Mortality, probability of treatment by fibrosis and viral genotype, combination therapy of telaprevir (treatment naïve cohort), PEG- IFN and ribavirin therapy for genotype 1 through 6, Retreatment of genotype 1 for telaprevir –based combination therapy | prevalence in age groups (Rotermann et al.): 0.5% (95%CI 0.3-0.9%) | rate for age group (Yeung et al): 91% | early and late
stage HCV | and pre-death HCV phase, transplant and post-transplant cost, anti-viral therapies, adverse events, anti-HCV test, HCV RNA test | (prevalence, age ranges) Sensitivity Analysis (screening, HCV, and treatment parameters) Probabilistic Sensitivity Analysis (screening, HCV, and treatment parameters) | | | General Popula | | 1 | 1 | | | <u> </u> | 1 | | | | | | | | | | Coffin[19],
2012,
United States | Hypothetical
cohort of general
adult population
screening (age
20-69) | CUA | Societal | No screening
program
compared to
screening program
for adults living in
the United States | Testing or no testing (natural history of disease), positive of negative test, positive or negative PCR test, Referral or no referral to treatment, diagnosis, treatment, treatment failure or response | Lifetime | Costs: 3% Benefits: 3% | Costs and consequences of screening strategies and no screening strategy, cost per life-year-gained, QALY | Distribution of fibrosis stage at time of diagnosis, rate of progression through each stage of fibrosis, spontaneous presentation outside screening, rates of sustained viral response | Proportion of
general US adult
population HCV
positive: 0.16%
(range: 0.13-
0.20%) | Assumption that 15% of the general population would be screened, based on 5-60% uptake of screening (Bassett et al.). | A variety of
literature-based
sources were
used to provide
utility data (Short
Form 36 Health
Survey data). | HCV antibody screening, RNA polymerase chain reaction test cost, Telaprevirbased therapy cost, boceprevirbased therapy costs, physician costs, disease management cots, and liver transplant and management costs | Sensitivity Analysis (all parameters varied in one- way sensitivity analysis) Scenario Analysis (varying all parameters to be unfavorable) Probabilistic Sensitivity Analysis (all parameters varied) | USD
(2010) | | Eckman[25],
2013,
United States | Hypothetical
cohort of
individuals 46.2
years old, with a
mean HCV
infection
duration of 20.7 | CUA | Payer | No screening
program
compared to
screening program
for asymptomatic
adults living in the
United States | Screen and
treat or no
screening; male
or female;
Caucasian,
African
American or | Lifetime | Costs: 3% Benefits: 3% | Costs and
consequences
of screening
strategies and
no screening
strategy, cost
per life-year- | Development of
hepatocellular
carcinoma,
fibrosis
progression | HCV positive:
0.014 (0.013-
0.019) | Not reported | Standard gamble
utility assessment
of HCV patients,
from meta-
regression
(McLernon et al.) | Cost by disease
state, cost of
hepatocellular
carcinoma
(with or
without liver
transplant), | Sensitivity analysis (all variables) Probabilistic Sensitivity Analysis (all | USD
(2011) | | Author,
Year,
Country | Population | Model | Perspective | Comparators | Clinical
Pathway | Time
Horizon | Discount
Rate | Outcome | Clinical Inputs | Prevalence
Estimate | Adherence
Estimate | Preference
measurement | Included Cost
Inputs | Assessment of
Uncertainty | Currency
(Year) | |-------------------------------------|---|-------|-------------|--|---|-----------------|--------------------------|---|---|---|---|---|--|--|--------------------| | Country | years | | | | Hispanic; EIA positive or negative; PCR positive or negative; if negative PCR, RIBBA positive or negative; accepts or declines treatment; diagnosis | | | gained, QALY | | | | | medication
cost, lab test
costs, doctors
office visit
costs, cost of
screening, cost
of treatment | parameters)
Deterministic Sensitivity Analysis | | | Helsper[3],
2012,
Netherlands | General
population | CUA | Payer | No screening program compared to "general campaign" consisting of local radio, newspaper and print advertising AND No screening program compared to "support campaign" consisting of local radio, newspaper and print advertising and availability of information sessions for general practitioners | Screening campaign or no screening campaign, test or no test, positive or negative test result, diagnosis or no diagnosis, treatment or no treatment, response to treatment or no response to treatment | Lifetime | Costs: 4% Benefits: 1.5% | Costs and consequences of screening strategies and no screening strategy, cost per life-year-gained, QALY | Distribution of fibrosis stage, patients eligible for treatment, probability of successful treatment | Not reported | General
Campaign:
Not Reported
Support
Campaign:
Referral rate:
70% | Not reported | Diagnostic tests and consultations before treatment, medication and diagnostic tests during treatment (by fibrosis stage), campaign costs (organization, materials, information session costs, brochure costs, GP support costs – for Support campaign only) | Sensitivity
Analysis
Probabilistic
Sensitivity
Analysis | € (2007) | | Kim[26],
2015,
United States | Hypothetical
cohort
(n=10,000) of 40
year old adults in
Egypt | CUA | Societal | Screening
program using
ELISA then PCR,
compared to No
screening | Screening, test positive or negative, treatment, chronic HCV, recovered, cirrhosis, decompensated cirrhosis hepatocellular carcinoma, liver transplant, death, | 40 years | Costs: 3% Benefits: 3% | Costs and
consequences
of screening
strategies and
no screening
strategy, cost
per life-year-
gained, QALY | Sensitivity and specificity of ELISA and PCR, probabilities of chronic HCV, recovered, cirrhosis, decompensated cirrhosis hepatocellular carcinoma, liver transplant, death | HCV prevalence
in general
population in
Egypt: 4.1-39.4% | Receive
treatment
after positive
test (Piton et
al): 21.5% | A variety of
literature-based
sources were
used to provide
utility data (Short
Form 36 Health
Survey data).
(Singer et al
2001) | ELISA, PCR, genotyping, annual costs (HCV, chronic HCV, cirrhosis, decompensated cirrhosis, transplant, hepatocellular carcinoma), treatment (dual-therapy, and triple therapy), productivity | Sensitivity Analysis (time horizon, age cohort, progression, prevalence, adherence, utility) Scenario analysis (treatment in government vs private hospital, dual vs triple therapy, screening only | USD
(2014) | | Author,
Year,
Country | Population | Model | Perspective | Comparators | Clinical
Pathway | Time
Horizon | Discount
Rate | Outcome | Clinical Inputs | Prevalence
Estimate | Adherence
Estimate | Preference
measurement | Included Cost
Inputs | Assessment of Uncertainty | Currency
(Year) | |--|--|-------|---------------------------|---|--|-----------------|------------------------|---|---|--|--|---|--|--|--------------------| | · | | | | | | | | | | | | | loss | males or females or both) | | | Singer[27],
2001,
United States | Hypothetical
cohort of adults
who attend a
regular check-up
with their
primary health
care provider | CUA | Societal | Screening
program using
ELISA then PCR,
or only PCR,
compared to No
screening | Screening or no screening, positive or negative ELISA test, PCR test if positive ELISA test, diagnosis, treatment, cirrhosis, decompensated cirrhosis, hepatocellular carcinoma, transplant, death | Not
Reported | Costs: 3% Benefits: 3% | Costs and
consequences
of screening
strategies and
no screening
strategy, cost
per life-year-
gained, QALY | Sensitivity and specificity of ELISA and PCR, probabilities of cirrhosis, successfully treated, decompensated cirrhosis hepatocellular carcinoma, liver transplant, death, relapse, response to treatment | HCV prevalence
in general
population (Alter
et al): 9% | Receive
treatment
after positive
test (Piton et
al): 20% | A variety of
literature-based
sources were
used to provide
utility data (Short
Form 36 Health
Survey data). | Liver biopsy, liver profile, ultrasound, drugs, outpatients, missed work, ELISA, PCR, genotyping, annual costs (HCV, cirrhosis, decompensated cirrhosis, transplant, hepatocellular carcinoma) | Sensitivity Analysis (all parameters in one-way sensitivity analysis and two- way with parameters that had largest impact in one- way) | USD
(2001) | | Other Population | | | 1 - | | | | | I m . i | | | | | I a . | | | | Brett-
Major[28],
2016,
United States | Random sample
of 1000 recently
deployed
military
personnel | CA | Department
of Defense | Screening
program using
EIA then
recombinant
immunoblot assay
(RIBA), or only
EIA, compared to
No screening | Screening or no
screening,
positive or
negative EIA
test, RIBA test,
if positive
diagnosis then
treatment. | Not
reported | Not
reported | Total costs | Sensitivity and
specificity of
EIA and RIBA | Seroprevalence
data from study:
0.16% | Not reported | Not applicable | Screening
tests, treatment
including
sofosbruvir | Sensitivity
analysis (cost,
prevalence) | Not
reported | | Honeycutt[29]
, 2007,
United States | Adults who
present at a
public STD
clinic | CEA | STD Clinic
Perspective | No Screening for
HCV compared to
screening for
HCV in adults
who present at a
public STD clinic | Not Reported | Not
reported | Not
Reported | Cost per positive test | Proportion of positive testers who return to clinic, proportion of negative testers who return to clinic | Drug users: 57% (44-69%) Men over 40 with 100+ sexual partners: 16% (6.7-25) Men over 40 with <100 sexual partners: 2.0% (1.2-2.8%) Women over 40 years old: 0.9% (0.2-1.7) | Not reported | Not applicable | Staff
compensation,
cost for EIA
test, cost for
RIBA test | Sensitivity
analysis (cost,
prevalence) | USD
(2006) | | Josset[30],
2004,
France | Subgroups who have a history of gastroscopy, have had contact with an infected person, have a history of invasive procedure, history of colonoscopy or | CEA | Not
reported | Comparing
reference
screening (of high
risk individuals
who either had a
blood transfusion
before 1991, or
are drug users)
with screening of
people who have a
history of | Patient were
screened, and
were either
positive or
negative for
HCV | Not
Reported | Not
Reported | Cost per
positive test | Positive serology tests | Not reported | Not Reported | Not Reported | Physician fees
(consultation),
test costs
(ELISA, blood
sample) | Sensitivity
Analysis (HCV
seroprevalence,
proportion of
high-risk
patients) | €
(1997) | | Author,
Year,
Country | Population | Model | Perspective | Comparators | Clinical
Pathway | Time
Horizon | Discount
Rate | Outcome | Clinical Inputs | Prevalence
Estimate | Adherence
Estimate | Preference
measurement | Included Cost
Inputs | Assessment of
Uncertainty | Currency
(Year) | |--|---|-------|-----------------|---|--|-----------------|--------------------------|---|---
---|--|---|--|---|------------------------| | v | history of
surgery | | | gastroscopy have
had contact with
an infected
person, have a
history of invasive
procedure, history
of colonoscopy or
history of surgery | | | | | | | | | | | | | Orkin[31],
2016,
United
Kingdom | Patients (≥18 years old) presenting to the ER between October 13-19 2014 and having blood drawn (n=2,118) | CEA | Not
reported | No screening
compared to
screening (done in
ER when other
blood tests
ordered) | Patient were
screened, and
were either
positive or
negative for
HCV | Not
reported | Not
reported | Cost per case
detected | Seroprevlanece
taken from study | Prevalence from
study: 1.84% | Not reported | Not reported | Cost per
diagnosis | None | £ (unknown) | | Stein[5],
2003,
United
Kingdom | Hypothetical cohort of 246,636 attending a genito-urinary clinic annually | CUA | Payer | Screening
program of all
individuals
attending a genito-
urinary clinic
compared to no
screening program | Screening or no screening, positive or negative ELISA test, PCR test if positive ELISA test, diagnosis, treatment | 50 years | Costs: 6% Benefits: 1.5% | Costs and consequences of screening strategies and no screening strategy, cost per life-year-gained, QALY | Sensitivity and specificity of ELISA and PCR, proportion with mild, moderate or severe disease, complications, progression to cirrhosis, decompensated cirrhosis, hepatic carcinoma, death, transplant, second transplant | HCV prevalence
at genito-urinary
clinic (Goldberg
et al): 1.5% | Acceptance of testing rate for individuals using ELISA test (Serfaty et al): 49% Acceptance of testing rate for individuals using PCR test (Clinician Advisory Group): 100% Acceptance of testing rate for individuals using biopsy (Jowett et al): 77% Acceptance of treatment (Jowett et al): 50% | VAS for HCV patients (Cotler et al) | ELISA, PCR, Counselling, liver biopsy, medical visits, medications, inpatient day, hepatocellular carcinoma inpatient cost, chronic HCV infection, hepatic encephalopath y inpatient, variceal bleed inpatient, liver transplant | Sensitivity Analysis (all parameters in one-way and multi-way sensitivity analysis) | £ (2001) | | Tramarin[7],
2008,
Netherlands | Hypothetical
cohort of
individuals who
had minor or
major surgery in
2007 | CUA | Societal | Screening
program of
individuals who
had minor or
major surgery
compared to no
screening. | Screening or no
screening,
diagnosis,
treatment,
cirrhosis,
decompensated
cirrhosis,
hepatocellular | Lifetime | Costs: 3% Benefits: 3% | Costs and
consequences
of screening
strategies and
no screening
strategy, cost
per life-year-
gained, QALY | Probabilities of
symptomatic and
asymptomatic
HCV,
spontaneous
clearance,
progression,
cirrhosis, | Randomized
control trial HCV
prevalence
estimate of
symptomatic and
asymptomatic
(Manns et al):
0.16, 0.84 | Complete compliance | A variety of
literature-based
sources were
used to provide
utility data (Short
Form 36 Health
Survey data). | Screening,
annual costs
(screening,
cirrhosis,
transplantation
in
hepatocellular
carcinoma), | Sensitivity
Analysis
(prevalence of
genotypes 1 and
4) | €
(Not
Reported) | | Author,
Year,
Country | Population | Model | Perspective | Comparators | Clinical
Pathway | Time
Horizon | Discount
Rate | Outcome | Clinical Inputs | Prevalence
Estimate | Adherence
Estimate | Preference
measurement | Included Cost
Inputs | Assessment of
Uncertainty | Currency
(Year) | |-----------------------------|------------|-------|-------------|-------------|------------------------------------|-----------------|------------------|---------|--|------------------------|-----------------------|---------------------------|---|------------------------------|--------------------| | | | | | | carcinoma,
transplant,
death | | | | decompensated
cirrhosis,
hepatocellular
carcinoma, death, | | | | monthly costs
(acute therapy,
chronic
therapy) | | | | | | | | | | | | | and liver
transplant | | | | | | | # **Appendix D: Quality of Included Studies** | Author | Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | Total (/19) | |----------------|------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|-------------| | Drug Users | | | | | | | | | | | | | | | | | | ı | | | | | Castelnuovo[2] | 2006 | 19 | | Helsper [3] | 2012 | 19 | | Leal[4] | 1999 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 17 | | Stein[5] | 2003 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 18 | | Stein [6] | 2004 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 18 | | Tramarin[7] | 2008 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 16 | | High Risk | Batra[8] | 2001 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 13 | | Lapane[9] | 1998 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 8 | | Liu [10] | 2013 | 19 | | Miners[11] | 2014 | 19 | | Nakamura[12] | 2008 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 17 | | Pregnant | | | | | | | | | | | • | | | | | • | | • | • | • | | | Plunkett[13] | 2004 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 18 | | Selvapatt[14] | 2015 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 17 | | Urbanus[15] | 2013 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 18 | | Prisoners | He [16] | 2016 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 16 | | Sutton[17] | 2006 | 19 | | Sutton[18] | 2008 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 18 | | Birth Chort | | | | | | | | | | | | | | | | | | • | • | • | | | Coffin [19] | 2012 | 19 | | Liu [10] | 2013 | 19 | | McEwan[20] | 2013 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 18 | | McGarry[21] | 2012 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 18 | | Author | Year | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | Total (/19) | |--------------------|------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|-------------| | Nakamura[12] | 2008 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 17 | | Rein[22] | 2012 | 19 | | Ruggeri[23] | 2013 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 18 | | Wong[24] | 2014 | 19 | | General Population | | | | | | | | | | | | | | | | | • | | | | | | Coffin [19] | 2012 | 19 | | Eckman[25] | 2013 | 19 | | Helsper [3] | 2012 | 19 | | Kim[26] | 2015 | 19 | | Singer [27] | 2001 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 17 | | Other Populations | | | | | | | | | | | | | | | | | • | | | | | | Brett-Major[28] | 2016 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 12 | | Honeycutt[29] | 2007 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 14 | | Jossett[30] | 2004 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 13 | | Orkin[31] | 2016 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 11 | | Stein[5] | 2003 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 18 | | Tramarin[7] | 2008 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 16 | ###
Bibiliography - [1] Evers S, Goossens M, de Vet H, van Tulder M, Ament A. Criteria list for assessment of methodological quality of economic evaluations: Consensus on Health Economic Criteria. Int J Technol Assess Health Care 2005;21:240-245. - [2] Castelnuovo E, Thompson-Coon J, Pitt M, Cramp M, Siebert U, Price A, et al. The cost-effectiveness of testing for hepatitis C in former injecting drug users. Health Technol Assess 2006;10:iii-iv, ix-xii, 1-93. - [3] Helsper CW, Borkent-Raven BA, de Wit NJ, van Essen GA, Bonten MJ, Hoepelman AI, et al. Cost-effectiveness of targeted screening for hepatitis C in The Netherlands. Epidemiol Infect 2012;140:58-69. - [4] Leal P, Stein K, Rosenberg W. What is the cost utility of screening for hepatitis C virus (HCV) in intravenous drug users? J Med Screen 1999;6:124-131. - [5] Stein K, Dalziel K, Walker A, Jenkins B, Round A, Royle P. Screening for hepatitis C in genito-urinary medicine clinics: a cost utility analysis. J Hepatol 2003;39:814-825. - [6] Stein K, Dalziel K, Walker A, Jenkins B, Round A, Royle P. Screening for Hepatitis C in injecting drug users: a cost utility analysis. J Public Health (Oxf) 2004;26:61-71. - [7] Tramarin A, Gennaro N, Compostella FA, Gallo C, Wendelaar Bonga LJ, Postma MJ. HCV screening to enable early treatment of hepatitis C: a mathematical model to analyse costs and outcomes in two populations. Current pharmaceutical design 2008;14:1655-1660. - [8] Batra N. **Hepatitis C screening and treatment versus liver transplantation: A financial option appraisal and commissioning model for purchasers. Disease Management and Health Outcomes 2001;9:371-384. - [9] Lapane KL, Jakiche AF, Sugano D, Weng CS, Carey WD. Hepatitis C infection risk analysis: who should be screened? Comparison of multiple screening strategies based on the National Hepatitis Surveillance Program. Am J Gastroenterol 1998;93:591-596. - [10] Liu S, Cipriano LE, Holodniy M, Goldhaber-Fiebert JD. Cost-effectiveness analysis of risk-factor guided and birth-cohort screening for chronic hepatitis C infection in the United States. PLoS ONE 2013;8:e58975. - [11] Miners AH, Martin NK, Ghosh A, Hickman M, Vickerman P. Assessing the cost-effectiveness of finding cases of hepatitis C infection in UK migrant populations and the value of further research. J Viral Hepat 2014;21:616-623. - [12] Nakamura J, Terajima K, Aoyagi Y, Akazawa K. Cost-effectiveness of the national screening program for hepatitis C virus in the general population and the high-risk groups. The Tohoku journal of experimental medicine 2008;215:33-42. - [13] Plunkett BA, Grobman WA. Routine hepatitis C virus screening in pregnancy: a cost-effectiveness analysis. Am J Obstet Gynecol 2005;192:1153-1161. - [14] Selvapatt N, Ward T, Bailey H, Bennett H, Thorne C, See LM, et al. Is antenatal screening for hepatitis C virus cost-effective? A decade's experience at a London centre. J Hepatol 2015;63:797-804. - [15] Urbanus AT, van Keep M, Matser AA, Rozenbaum MH, Weegink CJ, van den Hoek A, et al. Is adding HCV screening to the antenatal national screening program in Amsterdam, the Netherlands, cost-effective? PLoS ONE 2013;8:e70319. - [16] He T, Li K, Roberts MS, Spaulding AC, Ayer T, Grefenstette JJ, et al. Prevention of Hepatitis C by Screening and Treatment in U.S. Prisons. Ann Intern Med 2016;164:84-92. - [17] Sutton AJ, Edmunds WJ, Gill ON. Estimating the cost-effectiveness of detecting cases of chronic hepatitis C infection on reception into prison. BMC Public Health 2006;6:170. - [18] Sutton AJ, Edmunds WJ, Sweeting MJ, Gill ON. The cost-effectiveness of screening and treatment for hepatitis C in prisons in England and Wales: a cost-utility analysis. J Viral Hepat 2008;15:797-808. - [19] Coffin PO, Scott JD, Golden MR, Sullivan SD. Cost-effectiveness and population outcomes of general population screening for hepatitis C. Clin Infect Dis 2012;54:1259-1271. - [20] McEwan P, Ward T, Yuan Y, Kim R, L'Italien G. The impact of timing and prioritization on the cost-effectiveness of birth cohort testing and treatment for hepatitis C virus in the United States. Hepatology 2013;58:54-64. - [21] McGarry LJ, Pawar VS, Panchmatia HR, Rubin JL, Davis GL, Younossi ZM, et al. Economic model of a birth cohort screening program for hepatitis C virus. Hepatology 2012;55:1344-1355. - [22] Rein DB, Smith BD, Wittenborn JS, Lesesne SB, Wagner LD, Roblin DW, et al. The cost-effectiveness of birth-cohort screening for hepatitis C antibody in U.S. primary care settings. Ann Intern Med 2012;156:263-270. - [23] Ruggeri M, Coretti S, Gasbarrini A, Cicchetti A. Economic assessment of an anti-HCV screening program in Italy. Value Health 2013;16:965-972. - [24] Wong W, Ty H, Feld J, Wong T, Krahn M. Cost-Effectiveness of Screening Hepatitis C in Canada. In Progress 2014. - [25] Eckman MH, Talal AH, Gordon SC, Schiff E, Sherman KE. Cost-effectiveness of screening for chronic hepatitis C infection in the United States. Clin Infect Dis 2013;56:1382-1393. - [26] Kim DD, Hutton DW, Raouf AA, Salama M, Hablas A, Seifeldin IA, et al. Cost-effectiveness model for hepatitis C screening and treatment: Implications for Egypt and other countries with high prevalence. Glob Public Health 2015;10:296-317. - [27] Singer ME, Younossi ZM. Cost effectiveness of screening for hepatitis C virus in asymptomatic, average-risk adults. American Journal of Medicine 2001;111:614-621. - [28] Brett-Major DM, Frick KD, Malia JA, Hakre S, Okulicz JF, Beckett CG, et al. Costs and consequences: Hepatitis C seroprevalence in the military and its impact on potential screening strategies. Hepatology 2016;63:398-407. - [29] Honeycutt AA, Harris JL, Khavjou O, Buffington J, Jones TS, Rein DB. The costs and impacts of testing for hepatitis C virus antibody in public STD clinics. Public Health Rep 2007;122 Suppl 2:55-62. - [30] Josset V, Torre JP, Tavolacci MP, Van Rossem-Magnani V, Anselme K, Merle V, et al. Efficiency of hepatitis C virus screening strategies in general practice. Gastroenterologie clinique et biologique 2004;28:351-357. - [31] Orkin C, Flanagan S, Wallis E, Ireland G, Dhairyawan R, Fox J, et al. Incorporating HIV/hepatitis B virus/hepatitis C virus combined testing into routine blood tests in nine UK Emergency Departments: the "Going Viral" campaign. HIV Med 2016;17:222-230.